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NONSTATIONARY PROCESSES IN OPTICAL FIBER FORMATION. 

I. STABILITY OF THE DRAWING PROCESS 

V. N. Vasil'ev, G, N. Dul'nev, 
and V. D. Naumchik 

UDC 532.51:532.522 

The stability of quartz glass melt flow in the deformation domain is investigated in 
the linear hydrodynamic stabilityapproximation as a function of the velocity coeffi- 
cient, the drawing rate, and the temperature modes of optical fiber formation. 

One of the fundamental quality indices of an optical fiber is the constancy of its geo- 
metric dimensionsalong the length. Fluctuations of the lightguide diameter cause nonstation- 
ary processes during its formation, for instance, fluctuations of the melt viscosity in the 
deformation zone, small fluctuations of the feeding and drawing velocities, inhomogeneity of 
the ingot, etc. Since different perturbations are inevitably present in any real process of 
optical fiber fabrication, the sensitivity of the lightguide dimensions to small fluctuations 
in the drawing parameters near their stationary values is of great interest. Closely related 
to the problem of investigating the reaction of the optical fiber drawing process to external 
perturbing effects is the problem of its stability because it governs the domain of the param- 
eters where continuous fiber formation is possible. 

Instability of the process can be caused by two mechanisms: cohesion breakaway of the 
lightguide (the tensile stress exceeds its rupture strength), and hydrodynamic instability 
(small perturbations increase without limit in time and cause fracture of the liquid jet or a 
periodic change in the thickness of the fiber being formed appears, i.e., so-called drawing 
resonance is observed) The first fracture mechanism during the drawing of quartz lightguides 
is associated with underheating of the quartz glass melt, i.e., wlth too high a value of the 
viscous friction and is not examined here. 

Investigation of the stability of the fiber formation process was performed first for 
the case of drawing from a filler of a continuous polymeric or vitreous textile fiber in iso- 
thermal [l, 21] and nonisothermal conditions [3-5]. However, the application of these results 
directly to production of optical fiber is difficult (the isothermal model is too rough a 
generalization and mainly fiber drawing of polymers was examined in [3-5] and theenergy equa- 
tion being used cannot adequately describe the heat transfer process in lightguide produc- 
tion). The stability of optical fiber drawing was studied directly in [6-9] but the stabil- 
ity was investigated in [6-8] only within the framework of the hydrodynamic model. The ingot 
heating conditions were not examined here while the temperature distribution in the equations 
of motion was taken into account parametrically by giving the viscosity by a function of the 
longitudinal coordinate. The system of governing equations in [9] is actually borrowed com- 
pletely from [3, 5], therefore, the remark formulated above relative to [3, 5] also refers to 
[9]. Let us note that the dependence of the drawing stability on the temperature conditions 
for fiber formation is shown convincingly in [8, 9]. It follows from the survey presented 
that the drawing stability problem for optical lightguides is insufficiently investigated. 
For a correct solution of the problem posed the heat exchange process during fiber production 
must be examined more completely since it is apparently governing. 

i. Stability of the optical fiber drawing process is investigated in this paper within 
the framework of the linear theory of stability on the basis of a quasi-one-dimenslonal model 
[i0]. Fiber formation is considered under simple uniaxlal tension of a Newtonian fluid with 
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Fig. i. Configuration of the computation domain. 

variable viscosity governed by the temperature distribution. It is assumed in the derivation 
of the continuity, motion, and energy equations that the physical properties of glass, with 
the exception of viscosity, are constant, the liquid is isotropic and its motion is axisym- 
metric. The heat conductivity equation is written for the case of ingot heating in a furnace 
(Fig. i). The system of governing equations is written as follows in dimensionless form [i0]: 

aN - V OR + R av ( i )  
a~ Ox 2 Ox 

+ vOV 1 a av R~ (2) 

Rz \(07"0"c +v--~x )OT'~ �9 pel oxO (LR2 0T]ox / _ 2 R ( i  + R,,)I/2St(T_I) + (3) 

1 
4 

+ 4XRRp (R v -- R) j ([~s~Tp-- eT ~) [Rv -- R + kR' (x -- ~3)1 d~l, 
[(~ - -  x ?  + (Rv - -  R)~P 

0 

where V = V/Vo, ~ = ~/Uo, for the geometric parameters y = y/Z(y6{x, R, Z, Rp, Ro}), for the 
temperature ~ = t/To (t6{To, T, Tp, T~}), 7---- %e /%T, ~ = TVo/l, Pe = pVocZ/%T, Re = pVoZ/~o, 

2 S 
St = h/pVoZ, X = ncooTo/cpVo, We = VogZ,/o, Fr = 2V~/gZ, and k is a weight factor, 

k = { -- 1,1, ifif R'R,<O, > O, R' = OR/Ox. 

The bar above the dimensionless variables is omitted in writing (1)-(3) while the temperature 
dependence of the viscosity was modeled by the following relationships: ~(T) = ~oexp (--a2T + 
a~) In]. 

Let us form the equation describing the perturbation of the stationary state of the draw- 
ing mode. When investigating the Laminar flow stability its governing parameters are decom- 
posed into fundamental and perturbing which are superposed on the fundamental. Let V(x), T(x), 
R(x) be the~velocity, temperature distribution, and shape of the jet surface for the steady 
state while V(x,~), ~(x,T), R(x,~) characterize the perturbation of the stationary state de- 
pendent on not only the coordinate x but also on the time. Then the governing parameters of 
of the resultant state can be written in the following form 

V(x, ~) = V(x)[I + 9 (x ,  -c)], T ( x ,  ,~) - T(x) [1 + ~ ( x ,  r 

~(x,  ~) = R (x) [1 + ~ (x, ~)]. (4) 
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1 TABLE i. Dependence of the Accuracy of Determining mi on the 
D i s c r e t i z a t i o n  o f  t h e  Des ign  Domain 

N "W ~o! Cd t lC~ l  v a l u e  C r i e a l  v a l u e  
, W N W 

40 

50 

15 
30 
70 

15 
30 
70 

--0,787 
--0,461 
--0,121 

--0,653 
--0,107 

0,184 

Not fixed 

36,71 

60 

70 

~v m+ 

15 --0,372 
30 0,256 
70 0,767 

15 --0,322 
30 0,264 
70 0,987 

21,38 

20,37 

The stability investigation problem is to clarify whether the perturbing action damps 
out or grows in time for a given fundamental flow. Let us substitute (4) into (1)-(3), and 
after linearizing with respect to the variables V, @, R with the parameters of the fundamental 
flow, i.e., the functions R(x), V(x), T(x), satisfying equations (1)-(3) for the steady state 
taken into account, we obtain a system of differential equations describing the perturbation 
of the stationary drawing mode: 

o~ v a~ R OP (5) 
Ox --a-x - - e  2 0 ~ '  

oP 3~ 
0~ Re 

off/ or/. a~ 4- ~ (x) ~ + ,~ (x) aT" ax~ ~- ~ (x) --8-U + ~ (x) [1 + ~ (x) - - 3 U  . ~ + % (x) ~, (6) 

where 

a? ~ 0"-7" 
0~ Pe Ox +" 

af  a~ �9 
- -  + % (x) ~ + ~ (x) ? + ~ - 3 T  + e~ (x) ~ + ~ (x) ~, 

I+.+ (x) - 

3 [2(~tRV)' ~ ' ] - - V , [ 3 ~ ( x ) =  1 d (3~tRzdV) 
~1 (X) r= G l~,V RgV I ~  dx ~ - -  2V'~, 

V7' 6,W' 1 2 d (  d_~x ) 
- -  , o h (x )  = , ~2  (x )  - -  3 ~ R  2 -Jr 

T V Re RV We RzV Re dx 
1 

2LT' 2R' St ( T - -  1) + 4XkRv (Rv--  R) [ (~epT 4 - -  eT9 (x--  ~1) an, 
0% (x) - T Pe T " T oJ [(rl - -  x) z + (Rp--R)Zl z 

R, 
RzV We 

(7) 

dT)  9(1 .q " 2 d kR z - 4 ,42R  )St  ( T - - 1 )  2VT' 
0% (x) -- RZ T Pe dx dx RT --  - - ~  

4%Rv --U- 
1 

j " ({3~vTp4 - -  eT ~) I (Rp--R)(Rp--3R) - I -kR ' (x -~ I ) (2Rp-3R)  
[ [(r I - -  X) z -~- ( R ,  - -  R)21 ~ + 

0 

4 R  ( R .  - -  R)  2 [Rp  - -  R --~ k R '  (x - -  ~l)] } d~, 
[(n - -  x) 2 + (Rv - -  R)~] 2 

3a~p, TV" 
~o~ (x) - - - ,  

Re V 

% (x) = 2 (LRT)' V - - -  

RT Pe 

2(1 -l- R"  )l/~St VT' 
R T 

% (x) - Re V R z dx ' 

P e '  rO~(x)= RaTPe dx 

16xRp8 (Rp--  R) T 3 1 R v _ R  + kR' ( ~ "  n) d~l. 
R b f [(rl - -  x )  z + ( R v  - -  R)21  z 

Here (...)' = d/dx, a2 = a2To, and the coefficients ~i(x), ai(x), ~(~ are evaluated in terms 
of the functions R(x), V(x), T(x) which are solutions of the system (1)-(3) for the steady 
state under the following boundary conditions 

R=Ro,  V=VK, T = T k  ~r  x = 0 ,  (8) 
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OT 
V---- I, - - 0  for x = l ,  

Ox (9) 

where V H is the dimensionless rate of ingot delivery, T k is the dimensionless temperature on 
the boundaries of the design domain, and Ro is the dimensionless ingot radius. 

We seek the solution of the system (5)-(7) in the form 

@ (x, T) = ,  (~ e -i~ (10) 

since any perturbation can be expanded in a Fourier series and represented as the sum of sep- 
arate fluctuations of the form (i0). Here ~(x) = ~(x) + i~(x) is the complex amplitude and 

= ~2 + i~i, where ~i is the growth coefficient, i.e., the quantity permitting a judg- 
ment as to whether the fluctuation ~(x, ~)(~(x, T)C{R~, T), V(x, T), T(x, ~}, ~)C{r(~), v(~, /(~}) 
grows or damps out. 

Substituting (i0) into (5)-(7), we obtain a system of ordinary differential equations to 
determine ~(x) and m of the following form 

R v' + fur = O, (11) w'+  V 

3~ v" -]- ~1 (x) v' + [~, (x) + iw] v -]- ~1 (x) r' + ~ (x) r + ~x (x) t' Jr ~2 (x) t = O, 
Re (12) 

_~k t, + % (X) t' + [~ (x) + io] t + ~3 (x) r' + ~ (x) r + p3V = 0. (13) 
Pe 

Here (...)" = da/dx 2, (...)' = d/dx. The boundary conditions for (11)-(13) are obtained from 
(8) and (9) after successive substitution of (4) and (I0) therein: 

r(O) = v(O) = t(O) = O, v(1) = t' (1) = O. (14) 

Therefore, investigation of the stability of the optical fiber drawing process is an 
eigenvalue problem for the system of ordinary differential equations (11)-(13) under the bound- 
ary conditions (14). Corresponding to each eigenvalue mJ will be a mode of the form ~J(x,T) = 

~. i 

[~J(x) + i~3(x)]e-m$ I~mj~i " The quantity m~m determines either the growth (m~ > 0) or damping 

( ~ j  < 0) o f  t h e  p e r t u r b a t i o n  bY i t s  s i g n ,  i . e . ,  f o r  m < 0 t h e  g i v e n  f l o w  { R(x ) ,  V (x ) ,  T ( x ) }  

f o r  a g i v e n  p e r t u r b a t i o n  ~ 3 ( x  ' ~) i s  s t a b l e  w h i l e  f o r  ~ > 0 i t  i s  u n s t a b l e .  

I f  a f i n i t e - d i f f e r e n c e  method i s  u s e d ,  t h e n  t h e  s y s t e m  of  d i f f e r e n t i a l  e q u a t i o n s  ( 1 1 ) -  
(13) w i t h  t h e  b o u n d a r y  c o n d i t i o n s  (14) can  be  compared  t o  a s y s t e m  o f  l i n e a r  homogeneous  a l -  
g e b r a i c  e q u a t i o n s  o f  t h e  fo rm 

(iA--~E)X = 0, (15) 

where E is the unit matrix, X = (..., rk, Vk, tk, ...)T, A is a tape matrix obtained asare- 
sult of approximating (11)-(13) by finite difference relationships, and ~" = (r -- 2#k + 
@k-l)/~ ", ~' = (~k -- ~k-l)/~- A nontrivial solution of the homogeneous system of equations 
(15) exists if and only if 

det(iA--~E) = O. (16) 

Therefore, the finite-difference method permits reduction of the eigenvalue problem for the 
system of differential equations to an algebraic eigenvalue problem (16). The initial com- 
plex matrix of the system (15) for the numerical computations was reduced by unitary trans- 
formations to the upper Hessenberg form which was then used to calculate all the eigenvalues 
by the QR-algorithm with a shift [12]. 

2. As the first step in the numerical investigation of the optical fiber drawing proc- 
ess within the framework of the approach elucidated, we consider lightguide formation with a 
constant temperature distribution in the deformation zone (isothermal drawing). For this case 
the system of equations describing the perturbed state consists of the equation (the analog 
of (12) for the isothermal mode) 
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3o,+o( vl, o, [ 3  1 R---e RV Re -{- R217 Re dx /72 - -  2V' - -  ko v + 

( 6V" 1 . ) r , + [  6 d (R2d~" ~ t?,' 2 ~2V~ ~ 
--t- ~ Re V -~ RV W-------~ RW Re dx \ -{, ~ q- "V Fr 

r = 0  
(17) 

and (ll), while the stationary fiber configurations and the velocity distribution for the cal- 
culation of the coefficients in (ii) and (17) are found from the stationary solution of (I) 
and (2) for ~ = const. 

Analogously to the above consideration the stability investigation problem for isother- 
mal drawing was reduced to an algebraic eigenvalue problem. The difficulty with the finite- 
difference approach is mainly that the accuracy of finding the critical value of the velocity 
coefficient W = Vo/V H is determined by discretization of the design domain. Presented in Ta- 
ble i are values of the magnitude of the damping factor for the first mode (it is considered 
that the first mode has the maximal value of ~J.) as a function of W and N. The most satis- 

i 
factory results are obtained for 50 < N < 70, consequently, in all the subsequent computa- 
tions to determine the critical value of the velocity coefficient its magnitude was found for 
N = 50, 60, 70 with subsequent extrapolation to 1/N § 0 since the error in determining Wcr 
is proportional to i/N. For the case presented in Table i (melt temperature 2000"C), Ecr = 
20.28, which is in good enough agreement with the data of previous investigations [8]. 

The quantity Wcr was used in [i, 2, 8] as the criterion characterizing melt flow stabil- 
ity in isothermal fiber drawing. It was considered that for W > Wcr the flow is unstable for 
all drawing modes, and conversely, is stable for W < Wcr. Computations performed show that a 
dependence exists between the critical value of the velocity coefficient and the melt temper- 
ature in the deformation and drawing velocity zone. It is seen from Table 2 that a tempera- 
ture rise in the glass mass (within definite limits) or in the drawing velocity (in both ca- 
ses this is equivalent to increasing the number Re since a diminution in the viscosity occurs 
in the second case as the temperature rises) for a fixed W results in an increase in the sta- 
bility of the drawing process. This latter means that it is apparently necessary to use the 
number Re jointly with W for the characteristics of stability threshold of the melt flow. 

3. The stability of a nonisothermal optical fiber drawing process was studied as a func- 
tion of W and the temperature conditions for fiber formation (the number St and the tempera- 
ture of the heating element). The temperature distribution along the heating element surface 
(the function Tp(~) in (3)) was modelled by the following relationship (see Fig. l) 

Tp~, - -  a~ < 0 < O, (d, --.da) < 0 < (1-- d~), 
02 (04 - -  0) 2 0 

Tm -I- (Tp~--  Tp~) 6,75. 0s , 0 < 0 < ~ ~, 

(18)  2 2 Tp(0) = Tp~,-~- 0~< 0 < 0 o - - ~ - 0 h ,  

Tpl -t- (Tp2 Tpl) 6.75 (0o - -  0) 2 (0h + 0 - -  0 o) 0o - -  2 0 ~ 0 ~ 0 o ,  
o~ ' 

TABLE 2. Dependence of the Damping Factor of the First Mode 
on the Melt Temperature in the Deformation Zone and the Draw- 
Ing Velocity for W -- 20 .3  

T, (~ 

1900 

2100 

V0, m/sec 

0,5 
2 
5 

10 

5 
10 

r176 1! T, (~ 

0,0319 
--0,8322 
--2,9621 
--7,1883 

--0,0008 
--0,8347 
--2,9795 
--7.1863 

2250 

2400 

Vo, ITI/sec 

0,5 
2 
5 

10 

0,5 
2 
5 

10 

J. 
t 

--0,0017 
--0,8456 
--2,9720 
--7,1083 

--0,0057 
--0,8227 
--2,9335 
--6.1289 

922 



--L 

0 

" ~ i  I 
/0 /00 /000 /0~00 /0 

r I Ill L I III I I TII I , llr 

100 /000 /0000 W 

Fig. 2. Dependence of the damping factor of the first mode 
on W (Tpl = 1500~ Tp2 = 2200~ Vo = 1 m/sec); a) ~ = 
0.375, St = 0.05 (I); 0.25 (2); 0.5 (3); b) St = 0.25, ~ = 
0.075 (i); 0.75 (2); 0.6 (3). 

where Oo=d2--dj, O=3--dl, Oh ~_~, 0,075~_0,75. The dependence (18) permits a sufficiently good 

approximation of the temperature distribution along the heating element surface since it as- 
sumes the existence of a kernel 0s with constant temperature and gradient part of the profile 
(near the boundary surfaces) in t~e temperature profile, where the temperature varies accord- 
ing to a third degree parabola law. Variation by the quantities Tpl, Tp2, the dimension of 
the central section (0~ depends on the constant ~ and for ~ = 0.75 we have O~ = 0 while for 

= 0.075 O~ = 0.9Z) and the length of the heated section (it is governed by the difference 
d2--dl) permits a change in the shape of the temperature distribution along the heating ele- 
ment surface and thereby permits modelling different thermal modes of fiber drawing. 

It is seen from Fig. 2 that as W increases for a fixed value of the number St the stabil- 
ity of the drawing process drops (Fig. 2b), while it also depends substantially on the ther- 
mal mode of furnace operation (Fig. 2a). The drawing process possesses the least stability 
for either a low value of the number St (curve I, Fig. 2b), or for a practically constant heat- 
ing element surface temperature (curve i, Fig. 2a which corresponds to the furnace operating 
mode for a 0.91 dimension of the kernel with constant temperature). This latter is explained 
by the fact that under given conditions the drawing process shifts substantially toward iso- 
thermy. Figure 2a also graphically illustrates that for an arbitrary fixed value of the num- 
ber St a certain optimal temperature mode of heating element operation exists from the view- 
point of the optical fiber drawing process stability. For this case, the condition correspond- 
ing to curve 3 in Fig. 2a (the magnitude of the kernel with the constant temperature equals 
0.2Z) is most optimal. A less stable mode of fiber formation is formed upon narrowing the 
heating zone further (curve 2 in Fig. 2a, no kernel with a constant temperature). The appear- 
ance of instability in this case is apparently associated with underheating of the glass mass 
and significant growth of the tensile force when small fluctuations in the technological proc- 
ess parameters result in substantial fluctuations of the tensile force. Analogously to the 
isothermal case, optical fiber drawing under nonisothermal conditions is marked by the growth 
in the first mode damping factor as the drawing velocity increases for a fixed value of W 
(~pl = 1500~ T-2 = 2200~ ~ = 0.375, W = 77, ~ = 50 W/(m2.K)): for Vo = i; 5; i0 m/see 
mi = --0.976; --5.~61; --9.899 respectively. 

In conclusion, it must be emphasized that the stability investigation performed for the 
optical fiber drawing process in both isothermal (see Table 2) and nonisothermal conditions 
(see Fig. 2) showed that for each mode of fiber formation a dependence of this characteristic 
of the technological process on the drawing temperature conditions exists. In each specific 
Case a certain interval in the temperature can be extracted in which an increase in stability 
is first observed as the temperature rises from the lower to the upper boundary with a subse- 
quent diminution as the upper boundary is approached. The lower boundary is determined by the 
cohesion stability of the drawing process (the magnitude of the tensile force should be less 
than the fiber strength limit) and the upper by the capillary instability associated with heat- 
ing the glass mass and by the low value of the viscosity at which dissociation of the liquid 
jet into drops occurs under the effect of surface tension forces. Therefore, for any fixed 
value of W, the drawing velocity, certain optimal temperature conditions exist for fiber for- 
mation for which the process is maximally stable. 
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NOTATION 

R, Rp, Ro, radii of the deformation, ingot, and heating element zones; ~, time; ~, ~o, 
melt viscosity and the viscosity scale when going over to dimensionless variables; x, longi- 
tudinal coordinate; T, To, Tp, temperatures of the melt, the gas being blown through the heat- 
ing zone, and the furnace; Tpl , Tp2 , maximal and minimal heating element temperature; kT, ~e, 
melt and effective coefficient of molecular conductivity which takes account of both the mo- 
lecular and the radiant conduction; 8, reflection coefficient; ep, E, emissivities of the 
heating element and the melt; q, an integration variable; l, heating element length; p, c, 
melt density and specific heat; h, coefficient of external heat elimination; no, refractive 
index of the gas being blown through the heating zone; oo, Stefan--Boltzmann constant; o, co- 
efficient of surface tension; d~, d2, coefficients in the temperature dependence of the vis- 
cosity; a2, a,, geometric dimensions of the heating zone; N, quantity of points along the lon- 
gitudinal coordinate during discretization ~f the design domain; V, VH, Vo, velocities of the 
melt, the ingot delivery, and the drawing. 
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TEMPERATURE-MEASUREMENT OPTIMIZATION AND NUMERICAL INVERSE CONDUCTION- 

TREATMENT SOLUTION 

E. A. Artyukhin, S. A. Budnik, 
and A. S. Okhapkln 

UDC 536.24 

Practical evidence is given that locally optimal measurement planning can be applied 
in nonstatlonary thermophysical experiments. 

Inverse treatments in thermophysics require a preliminary examination of topics in the 
formalization and algorithmization, as well as choice of working conditions to provide high 
accuracy. Simulation results [1]show that the systematic error in solving an inverse treat" 
ment is substantially dependent on the number of sensors used in the measurements and the po- 
sitions of them even if the exact values are known for the measured temperatures. A measure- 
ment scheme exists for which one can determine the unknown behavior oft he thermophyslcalchar- 
acteristics accurately. Measurement plan optimization before the experiments is therefore of 
interest. One can use experiment planning theory [2]. 

Optimum temperature-measurement planning is based on the following. We introduce a mea" 
surement plan 

= {N, X}, X = {x~}f 
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